3.104 \(\int \frac{\sin ^3(c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=161 \[ \frac{37 \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{40\ 2^{5/6} d \sqrt [6]{\sin (c+d x)+1} \sqrt [3]{a \sin (c+d x)+a}}-\frac{3 \sin ^2(c+d x) \cos (c+d x)}{8 d \sqrt [3]{a \sin (c+d x)+a}}+\frac{3 \cos (c+d x) (a \sin (c+d x)+a)^{2/3}}{40 a d}-\frac{99 \cos (c+d x)}{80 d \sqrt [3]{a \sin (c+d x)+a}} \]

[Out]

(-99*Cos[c + d*x])/(80*d*(a + a*Sin[c + d*x])^(1/3)) - (3*Cos[c + d*x]*Sin[c + d*x]^2)/(8*d*(a + a*Sin[c + d*x
])^(1/3)) + (37*Cos[c + d*x]*Hypergeometric2F1[1/2, 5/6, 3/2, (1 - Sin[c + d*x])/2])/(40*2^(5/6)*d*(1 + Sin[c
+ d*x])^(1/6)*(a + a*Sin[c + d*x])^(1/3)) + (3*Cos[c + d*x]*(a + a*Sin[c + d*x])^(2/3))/(40*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.252884, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2783, 2968, 3023, 2751, 2652, 2651} \[ \frac{37 \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{40\ 2^{5/6} d \sqrt [6]{\sin (c+d x)+1} \sqrt [3]{a \sin (c+d x)+a}}-\frac{3 \sin ^2(c+d x) \cos (c+d x)}{8 d \sqrt [3]{a \sin (c+d x)+a}}+\frac{3 \cos (c+d x) (a \sin (c+d x)+a)^{2/3}}{40 a d}-\frac{99 \cos (c+d x)}{80 d \sqrt [3]{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^3/(a + a*Sin[c + d*x])^(1/3),x]

[Out]

(-99*Cos[c + d*x])/(80*d*(a + a*Sin[c + d*x])^(1/3)) - (3*Cos[c + d*x]*Sin[c + d*x]^2)/(8*d*(a + a*Sin[c + d*x
])^(1/3)) + (37*Cos[c + d*x]*Hypergeometric2F1[1/2, 5/6, 3/2, (1 - Sin[c + d*x])/2])/(40*2^(5/6)*d*(1 + Sin[c
+ d*x])^(1/6)*(a + a*Sin[c + d*x])^(1/3)) + (3*Cos[c + d*x]*(a + a*Sin[c + d*x])^(2/3))/(40*a*d)

Rule 2783

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(d*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(f*(m + n)), x] + Dist[1/(b*(m + n)),
Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 2)*Simp[d*(a*c*m + b*d*(n - 1)) + b*c^2*(m + n) + d*(a*d*
m + b*c*(m + 2*n - 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[n]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2652

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^IntPart[n]*(a + b*Sin[c + d*x])^FracPart
[n])/(1 + (b*Sin[c + d*x])/a)^FracPart[n], Int[(1 + (b*Sin[c + d*x])/a)^n, x], x] /; FreeQ[{a, b, c, d, n}, x]
 && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]

Rule 2651

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(2^(n + 1/2)*a^(n - 1/2)*b*Cos[c + d*x]*Hy
pergeometric2F1[1/2, 1/2 - n, 3/2, (1*(1 - (b*Sin[c + d*x])/a))/2])/(d*Sqrt[a + b*Sin[c + d*x]]), x] /; FreeQ[
{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\sin ^3(c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx &=-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \int \frac{\sin (c+d x) \left (2 a-\frac{1}{3} a \sin (c+d x)\right )}{\sqrt [3]{a+a \sin (c+d x)}} \, dx}{8 a}\\ &=-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \int \frac{2 a \sin (c+d x)-\frac{1}{3} a \sin ^2(c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx}{8 a}\\ &=-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \cos (c+d x) (a+a \sin (c+d x))^{2/3}}{40 a d}+\frac{9 \int \frac{-\frac{2 a^2}{9}+\frac{11}{3} a^2 \sin (c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx}{40 a^2}\\ &=-\frac{99 \cos (c+d x)}{80 d \sqrt [3]{a+a \sin (c+d x)}}-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \cos (c+d x) (a+a \sin (c+d x))^{2/3}}{40 a d}-\frac{37}{80} \int \frac{1}{\sqrt [3]{a+a \sin (c+d x)}} \, dx\\ &=-\frac{99 \cos (c+d x)}{80 d \sqrt [3]{a+a \sin (c+d x)}}-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \cos (c+d x) (a+a \sin (c+d x))^{2/3}}{40 a d}-\frac{\left (37 \sqrt [3]{1+\sin (c+d x)}\right ) \int \frac{1}{\sqrt [3]{1+\sin (c+d x)}} \, dx}{80 \sqrt [3]{a+a \sin (c+d x)}}\\ &=-\frac{99 \cos (c+d x)}{80 d \sqrt [3]{a+a \sin (c+d x)}}-\frac{3 \cos (c+d x) \sin ^2(c+d x)}{8 d \sqrt [3]{a+a \sin (c+d x)}}+\frac{37 \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{40\ 2^{5/6} d \sqrt [6]{1+\sin (c+d x)} \sqrt [3]{a+a \sin (c+d x)}}+\frac{3 \cos (c+d x) (a+a \sin (c+d x))^{2/3}}{40 a d}\\ \end{align*}

Mathematica [A]  time = 0.45825, size = 110, normalized size = 0.68 \[ \frac{3 \cos (c+d x) \left (\sqrt{1-\sin (c+d x)} (2 \sin (c+d x)+5 \cos (2 (c+d x))-36)-37 \sqrt{2} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};\sin ^2\left (\frac{1}{4} (2 c+2 d x+\pi )\right )\right )\right )}{80 d \sqrt{1-\sin (c+d x)} \sqrt [3]{a (\sin (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sin[c + d*x]^3/(a + a*Sin[c + d*x])^(1/3),x]

[Out]

(3*Cos[c + d*x]*(-37*Sqrt[2]*Hypergeometric2F1[1/6, 1/2, 7/6, Sin[(2*c + Pi + 2*d*x)/4]^2] + Sqrt[1 - Sin[c +
d*x]]*(-36 + 5*Cos[2*(c + d*x)] + 2*Sin[c + d*x])))/(80*d*Sqrt[1 - Sin[c + d*x]]*(a*(1 + Sin[c + d*x]))^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.286, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \sin \left ( dx+c \right ) \right ) ^{3}{\frac{1}{\sqrt [3]{a+a\sin \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^3/(a+a*sin(d*x+c))^(1/3),x)

[Out]

int(sin(d*x+c)^3/(a+a*sin(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )^{3}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+a*sin(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^3/(a*sin(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+a*sin(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral(-(cos(d*x + c)^2 - 1)*sin(d*x + c)/(a*sin(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**3/(a+a*sin(d*x+c))**(1/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )^{3}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+a*sin(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)^3/(a*sin(d*x + c) + a)^(1/3), x)